Corrigendum for

"Testing Ambiguity Models through the Measurement of Probabilities for Gains and Losses"

By AURÉLIEN BAILLON

August 14, 2018

The prediction regarding binary complementarity (BC) for Choquet expected utility (Choquet EU) is not correct. It should be $BC^{-}(E) = -BC^{+}(E)$ (and not $BC^{-}(E) = BC^{+}(E)$). We describe below what it changes in the paper and in the Online Appendix.

In the paper, Table 5 becomes:

TABLE 5—PREDICTIONS OF CHOQUET EU

ВС	LA	UA	TA & ITA
$BC^{-}(E) = - BC^{+}(E).$	$LA^{+}(E_i, E_j) + LA^{-}(E_i, E_j) \le I$	$UA^{+}(E) + UA^{-}(E) \le l$	$TA^{+} = ITA^{-}$ $TA^{-} = ITA^{+}$ and $TA^{+} + ITA^{+} \le I$

The last two lines of page 85 should be dropped.

The proportions of subjects satisfying the predictions of Choquet EU has to be slightly revised upwards (+2 and +8 for experiments 1 and 2, respectively). The line referring to Choquet EU in Table 11 becomes:

TABLE 11—PROPORTION OF SUBJECTS SATISFYING ALL PREDICTIONS OF EACH MODEL

Model	Number of conditions	Proportion of subjects (in percent)	
		Experiment 1	Experiment 2
Choquet EU	4	24	49

Page 95, the sentence "Additionally, Choquet EU wrongly predicts BC -(E) = BC +(E)." should be dropped.

All other results are unaffected by the error. Our conclusions about the prediction ability of the various ambiguity models remain qualitatively unchanged.

In the Online Appendix, Result 1 of section A.5 is not correct. It should be:

Result 1. CEU predicts $BC^{-}(E) = -BC^{+}(E)$. No further restrictions on sign.

Proof: Let p, s, q and r be defined by $x_E 0 \sim x_p 0$, $x_E^c 0 \sim x_s 0$, $-x_E 0 \sim -x_q 0$ and $-x_E^c 0 \sim -x_r 0$. Under CEU, this implies $p = w^{-1}(W(E))$, $s = w^{-1}(W(E^c))$, $r = 1 - w^{-1}(W(E))$, $q = 1 - w^{-1}(W(E^c))$.

Therefore $BC^{-}(E) = 1 - q - r = 1 - 1 + s - 1 + p = s + p - 1 = -BC^{+}(E)$. It is straightforward that with no further conditions on W and w⁻¹ than that they are increasing, $BC^{-}(E)$ and $BC^{+}(E)$ can be of any opposite sign.